FURTHER RESULTS ON 3–REMAINDER CORDIAL LABELING OF GRAPHS

K. ANNATHURAI*
R. PONRAJ**
R. KALA***

ABSTRACT

Let G be a (p, q) graph. Let f be a function from V (G) to the set \{1, 2, \ldots, k\} where k is an integer \(2 < k \leq |V (G)|\). For each edge uv assign the label r where r is the remainder when f(u) is divided by f(v) (or) f(v) is divided by f(u) according as f(u) \(\geq f(v)\) or f(v) \(\geq f(u)\). Then the function f is called a k-remainder cordial labeling of G if \(|v_f (i) - v_f (j)| \leq 1, \ i, j \in \{1, \ldots, k\}\) \(v_f (x)\) denote the number of vertices labelled with x and \(|\eta_e (0) - \eta_o (1)| \leq 1\) respectively denote the number of edges labelled with an even integers and number of edges labelled with an odd integers. A graph admits a k-remainder cordial labeling is called a k-remainder cordial graph. In this paper we investigate the 3- remainder cordial labeling behavior of the subdivision of the star, wheel, subdivision of the wheel, subdivision of the comb, armed crown, fan, square of the path, \(K_{1,n} \odot K_2\), etc..

* Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Abishekappati, Tirunelveli–627 012, Tamil Nadu, India.
** Department of Mathematics, Sri Paramakalyani College, Alwarkurichi–627 412, India, Affiliated By Manonmaniam Sundaranar University.
*** Department of Mathematics, Manonmaniam Sundaranar University, Abishekappati, Tirunelveli–627 012, Tamil Nadu, India.
1. INTRODUCTION

In this paper we considered only finite and simple graphs. Let G_1 and G_2 be two graphs with vertex sets V_1 and V_2 and edge sets E_1 and E_2 respectively. Then their join $G_1 + G_2$ is the graph whose vertex set is $V_1 \cup V_2$ and edge set is $E_1 \cup E_2 \cup \{uv: u \in V_1$ and $v \in V_2\}$. The graph $W_n=C_n+K_1$ is called a wheel. In a wheel, a vertex of degree 3 is called a rim vertex. A vertex which is adjacent to all the rim vertices is called the central vertex. The edges with one end incident with the rim and the other incident with the central vertex are called spokes. The subdivision graph $S(G)$ of a graph G is obtained by replacing each edge uv by a path uwv. A comb is a caterpillar in which each vertex in the path is joined to exactly one pendant vertex. A graph $C_n \Theta K_1$ is called a crown. The corona of G_1 with G_2, $G_1 \odot G_2$ is the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2. Cahit [1], introduced the concept of cordial labeling of graphs. Ponraj et al. [4, 6], introduced remainder cordial labeling of graphs and investigate the remainder cordial labeling behavior of path, cycle, star, bistar, complete graph, etc., and also the concept of k-remainder cordial labeling introduced in [5]. Recently[9] they investigate the 3-remainder cordial labeling behavior of some graphs. In this paper we investigate the 3- remainder cordial labeling behavior of the subdivision of the star, wheel, subdivision of the wheel, subdivision of the comb, armed crown, fan, square of the path, $K_{1,n} \Theta K_2$, etc., Terms are not defined here follows from Harary [3] and Gallian [2].

2. k-REMAINDER CORDIAL LABELING

Definition 2.1 : Let G be a (p, q) graph. Let f be a function from $V (G)$ to the set $\{1, 2, \ldots , k\}$ where k is an integer $2 < k \leq |V (G)|$. For each edge uv assign the label r where r is the remainder when $f(u)$ is divided by $f(v)$ (or) $f(v)$ is divided by $f(u)$ according as $f(u) \geq f(v)$ or $f(v) \geq f(u)$. The function f is called a k-remainder cordial labeling of G if $|v_f(i) − v_f(j)| \leq 1$, $i, j \in \{1, \ldots , k\}$ where $v_f(x)$ denote the number of vertices labeled with x and $|\eta_e(0) − \eta_e(1)| \leq 1$ where $\eta_e(0)$ and $\eta_e(1)$ respectively denote the number of edges labeled with an even integers and number of edges labelled with an odd integers. A graph with a k- remainder cordial labeling is called a k-remainder cordial graph.

Now we investigate the 3- remainder cordial labeling behavior of the wheel W_n.

Theorem 2.2 : The wheel W_n is 3-remainder cordial if and only if $n\equiv 1 (mod 3)$.

Proof. Let $W_n = C_n + K_1$, where C_n is the cycle $u_1 u_2 \ldots , u_n u_1$ and $V(K_1) = \{u\}$. The proof of this theorem is proved in the following three cases.

Case(i): $n \equiv 0 (mod 3)$, $n \geq 3$.

Let $n = 3t$, $t > 1$. Suppose f is a 3- remainder cordial labeling of the wheel.

Subcase(i):

Let $f(u) = 1$. Then all the spokes receives the label 0. Also to get the minimum possible zero in the rim edges, when 1’s are labeled consecutively. Therefore $\eta_e(0) \geq n + (t-1) + 2$
\[n + t + 1 = 3t + t + 1 \]
\[\eta_e(0) \geq 4t + 1, \text{ which is a contradiction to the size of } W_n. \]

Subcase(ii):
Let \(f(u) = 1. \) Then maximum possible 1’s appear in the rim edges when 2 and 3 should be labeled alternatively. That is 1’s consecutively.
\[\eta_o(1) \leq 2t - 1 + t = 3t - 1 \]
\[\eta_o(1) \leq 3t - 1, \text{ which is a contradiction to the size of } W_n. \]

Subcase(iii):
Let \(f(u) = 3. \) Then similar to subcase(ii), we get a contradiction.

Case (i): \(n \equiv 1 \pmod{3} \)
Fix the label 2 to the central vertex \(u \) of the wheel. Next assign the labels 3 to the vertices \(u_1, u_3, \ldots, u_{(2n+1)/3} \). Then assign the label 2 to the vertices \(u_2, u_4, \ldots, u_{(2n-2)/3} \). Finally assign the label 1 to the vertices \(u_{2n+4}/3, u_{(2n+4)/3+1}, \ldots, u_n \). The **Table 1** establish that this vertex function \(f \) is 3-remainder cordial labeling of \(W_n \) for all \(n \).

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(\nu_f(1))</th>
<th>(\nu_f(2))</th>
<th>(\nu_f(3))</th>
<th>(\eta_e(0))</th>
<th>(\eta_o(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 1 \pmod{3})</td>
<td>(n - 1) (3)</td>
<td>(n + 2) (3)</td>
<td>(n + 2) (3)</td>
<td>(n)</td>
<td>(n)</td>
</tr>
</tbody>
</table>

Table 1

Case (iii): \(n \equiv 2 \pmod{3} \)
Proceed as in case(i), we get a contradiction.

Next we investigate the subdivision of the wheel \(W_n \).

Theorem 2.3: The graph \(S(W_n) \) is 3-remainder cordial for all values of \(n \).

Proof. Let \(V(S(W_n)) = \{u, u_i, v_i, w_i : 1 \leq i \leq n\} \) and \(E(S(W_n)) = \{uu_i, u_iv_i, v_iw_i : 1 \leq i \leq n\} \) U \(\{w_iV_{i+1} : 1 \leq i \leq n-1\} \) U \(\{w_nv_n\} \). Then the subdivision of the wheel has \(3n+1 \) vertices and \(4n \) edges.
Fix the label 2 to the central vertex \(u \) of wheel. Next assign the labels to the vertices \(u_i, v_i, w_i \) for \(1 \leq i \leq n \) as follows.
- \(f(u_i) = 3 \) for \(i = 1 \) to \(n \),
- \(f(v_i) = 2 \) for \(i = 1 \) to \(n \),
- \(f(w_i) = 1 \) for \(i = 1 \) to \(n \).

Note that \(\nu_f(1)=\nu_f(3)=n, \nu_f(2)=n+1 \) and \(\eta_f(0)=\eta_f(1)=2n \). Then clearly \(S(W_n) \) is 3-remainder cordial for all values of \(n \).

Now we investigate the subdivision of the comb.

Theorem 2.4: The graph \(S(P_n \circ K_1) \) is 3-remainder cordial for all \(n \).
Proof. Let P_n be a path u_1, u_2, \ldots, u_n. Let $V(S(P_n \circ K_1)) = \{ u_i, v_i, w_i : 1 \leq i \leq n \} \cup \{ u_i' : 1 \leq i \leq n-1 \}$ and $E(S(P_n \circ K_1)) = \{ u_iv_i, v_iw_i : 1 \leq i \leq n \} \cup \{ u_iu_i', u_i'w_{i+1} : 1 \leq i \leq n-1 \}$. Then the subdivision of the comb has $4n-1$ vertices and $4n-2$ edges.

Case(i): $n \equiv 0 \pmod{3}$

Assign the labels to the vertices u_i for $1 \leq i \leq n$ as follows.

\[
f(u_i) = \begin{cases}
1, & \text{for } i = 1, 4, \ldots, i + 3, \ldots, n - 2. \\
3, & \text{for } i = 2, 5, \ldots, i + 3, \ldots, n - 1. \\
2, & \text{for } i = 3, 6, \ldots, i + 3, \ldots, n - 3.
\end{cases}
\]

and assign the label 1 to the vertex u_n.

Next assign the labels to the vertices v_i, for $1 \leq i \leq n$ as follows.

\[
f(v_i) = \begin{cases}
1, & \text{for } i = 1, 4, \ldots, i + 3, \ldots, n - 2. \\
2, & \text{for } i = 2, 5, \ldots, i + 3, \ldots, n - 1. \\
3, & \text{for } i = 3, 6, \ldots, i + 3, \ldots, n.
\end{cases}
\]

and assign the labels to the vertices w_i, for $1 \leq i \leq n$ as follows.

\[
f(w_i) = \begin{cases}
1, & \text{for } i = 1, 4, \ldots, i + 3, \ldots, n - 2. \\
3, & \text{for } i = 2, 5, \ldots, i + 3, \ldots, n - 1. \\
2, & \text{for } i = 3, 6, \ldots, i + 3, \ldots, n.
\end{cases}
\]

and then assign the labels to the vertices u_i', for $1 \leq i \leq n$ as follows.

\[
f(u_i') = \begin{cases}
2, & \text{for } i = 1, 4, \ldots, i + 3, \ldots, n - 2. \\
3, & \text{for } i = 2, 5, \ldots, i + 3, \ldots, n - 4. \\
1, & \text{for } i = 3, 6, \ldots, i + 3, \ldots, n - 3.
\end{cases}
\]

Finally assign the label 2 to the vertices u_{n-1}'.

Case(ii): $n \equiv 1 \pmod{3}$

Assign the labels to the vertices $u_1, u_2, \ldots, u_{n-1}$ as follows.

\[
f(u_i) = \begin{cases}
3, & \text{for } i = 1, 4, \ldots, i + 3, \ldots, n - 3. \\
2, & \text{for } i = 2, 5, \ldots, i + 3, \ldots, n - 2. \\
1, & \text{for } i = 3, 6, \ldots, i + 3, \ldots, n - 1.
\end{cases}
\]

and assign the label 2 to the vertex u_n.

Next assign the labels to the vertices $u_1', u_2', \ldots, u_{n-1}'$ as follows.

\[
f(u_i') = \begin{cases}
2, & \text{for } i = 1, 4, \ldots, i + 3, \ldots, n - 2. \\
3, & \text{for } i = 2, 5, \ldots, i + 3, \ldots, n - 4. \\
1, & \text{for } i = 3, 6, \ldots, i + 3, \ldots, n - 3.
\end{cases}
\]

As in case(i) assign the labels to the vertices v_i, w_i for $1 \leq i \leq n-1$.

Finally assign the labels 1 and 3 to the vertices v_n and w_n of the subdivision of the comb respectively.

Case(iii): $n \equiv 2 \pmod{3}$

Assign the labels to the vertices $u_1, u_2, \ldots, u_{n-2}$ as follows.
\[
\begin{align*}
\{1, & \text{ for } i = 1, 4, \ldots, i + 3, \ldots, n - 3. \\
f(u_i) = & \begin{cases} \\
3, & \text{for } i = 2, 5, \ldots, i + 3, \ldots, n - 2. \\
2, & \text{for } i = 3, 6, \ldots, i + 3, \ldots, n - 1. \\
\end{cases}
\end{align*}
\]
and assign the labels 1 and 3 to the vertices \(u_{n-1}\) and \(u_n\) respectively.

Next assign the labels to the vertices \(u_1', u_2', \ldots, u_{n-2}'\) as follows.
\[
f(u_i') = \begin{cases} \\
2, & \text{for } i = 1, 4, \ldots, i + 3, \ldots, n - 2. \\
1, & \text{for } i = 2, 5, \ldots, i + 3, \ldots, n - 4. \\
3, & \text{for } i = 3, 6, \ldots, i + 3, \ldots, n - 3. \\
\end{cases}
\]
and assign the label 2 to the vertices \(u_{n-1}'\).

As in case(i) assign the labels to the vertices \(v_1, w_i\) for \(1 \leq i \leq n-2\).
Finally assign the labels 1, 2; 1, 3 respectively to the vertices \(v_{n-1}, v_n; w_{n-1}, w_n\) of the subdivision of the comb respectively. Thus the table 2, given below establish that this vertex labeling \(f\) is 3-remainder cordial labeling of \(S(P_n \circ K_1)\) for all \(n\).

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(v_1(1))</th>
<th>(v_1(2))</th>
<th>(v_1(3))</th>
<th>(\eta_e(0))</th>
<th>(\eta_o(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0(\mod 3))</td>
<td>(\frac{4n}{3})</td>
<td>(\frac{4n}{3})</td>
<td>(4n-3)</td>
<td>2n-1</td>
<td>2n-1</td>
</tr>
<tr>
<td>(n \equiv 1(\mod 3))</td>
<td>(\frac{4n-1}{3})</td>
<td>(\frac{4n-1}{3})</td>
<td>(4n-1)</td>
<td>2n-1</td>
<td>2n-1</td>
</tr>
<tr>
<td>(n \equiv 2(\mod 3))</td>
<td>(\frac{4n+1}{3})</td>
<td>(\frac{4n-2}{3})</td>
<td>(4n-2)</td>
<td>2n-1</td>
<td>2n-1</td>
</tr>
</tbody>
</table>

Next we investigate the subdivision of the star \(S(K_{1,n})\).

Theorem 2.5: The graph \(S(K_{1,n})\) is 3-remainder cordial for all \(n\).

Proof. Let \(u\) be \(n^{th}\) degree vertex of \(S(K_{1,n})\). Let \(V(S(K_{1,n})) = \{u, u_i, v_i : 1 \leq i \leq n\}\) and \(E(S(K_{1,n})) = \{ uu_i, u_i v_i : 1 \leq i \leq n\}\). Note that the subdivision of the star has \(2n+1\) vertices and \(2n\) edges.

Fix the label 2 to the central vertex \(u\) in the following all cases.

Case(i): \(2n\equiv 0(\mod 3)\)
Assign the label 3 to the vertices \(u_1, u_2, u_3, \ldots, u_{2n/3}\) consecutively. Then assign the label 2 to the remaining vertices \(u_{(2n/3)+1}, u_{(2n/3)+2}, \ldots, u_n\). Next assign the label 2 to the pendant vertices \(v_1, v_2, v_3, \ldots, v_{2n/6}\) consecutively and assign the label 1 to the remaining pendant vertices \(v_{(2n/6)+1}, v_{(2n/6)+2}, \ldots, v_n\).

Case(ii): \(2n\equiv 1(\mod 3)\)
Assign the label 3 to the vertices \(u_1, u_2, u_3, \ldots, u_{(2n+2)/3}\) consecutively. Then next assign the label 2 to the remaining vertices \(u_{((2n+2)/3)+1}, u_{((2n+2)/3)+2}, \ldots, u_n\). Now assign the label 2 to the pendant vertices \(v_1, v_2, v_3, \ldots, v_{(n-2)/3}\) consecutively and 1 to the remaining pendant vertices \(v_{((n-2)/3)+1}, v_{((n-2)/3)+2}, \ldots, v_n\).

Case(iii): \(2n\equiv 2(\mod 3)\)
Assign the label 3 to the vertices \(u_1, u_2, u_3, \ldots, u_{(2n+1)/3}\). Then next assign the label 2 to the vertices \(u_{(2n+1)/3}+1, u_{(2n+1)/3}+2, \ldots, u_n\). Next assign the label 2 to the pendant vertices \(v_1, v_2, v_3, \ldots, v_{(n-1)/3}\) consecutively and 1 to the remaining pendant vertices \(v_{(n-1)/3}+1, v_{(n-1)/3}+2, \ldots, v_n\). The table-3 shows that this vertex function \(f\) is 3- remainder cordial labeling of the subdivision of the star \(S(K_{1,n})\) for all \(n\).

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(v_1(1))</th>
<th>(v_1(2))</th>
<th>(v_1(3))</th>
<th>(\eta_c(0))</th>
<th>(\eta_o(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2n+1 \equiv 0 \pmod{3})</td>
<td>(\frac{n}{3})</td>
<td>(\frac{n+1}{3})</td>
<td>(\frac{n+2}{3})</td>
<td>(n)</td>
<td>(n-1)</td>
</tr>
<tr>
<td>(2n+1 \equiv 1 \pmod{3})</td>
<td>(\frac{n-1}{3})</td>
<td>(\frac{n+2}{3})</td>
<td>(\frac{n+3}{3})</td>
<td>(n-1)</td>
<td>(n)</td>
</tr>
<tr>
<td>(2n+1 \equiv 2 \pmod{3})</td>
<td>(\frac{n+1}{3})</td>
<td>(\frac{n+1}{3})</td>
<td>(\frac{n+2}{3})</td>
<td>(n)</td>
<td>(n-1)</td>
</tr>
</tbody>
</table>

Table-3

Here we investigate the fan \(F_n\).

Theorem 2.5: The fan is 3- remainder cordial for all values \(n\).

Proof. Let \(F_n = P_n + K_1\) where \(P_n\) is a path \(u_1, u_2, \ldots, u_n\) of length \(n\) and \(V(K_1)=\{u\}\). Let \(V(P_n+K_1) = V(P_n) \cup \{u\}\) and \(E(P_n+K_1) = \{uu_i : 1 \leq i \leq n\} \cup \{u_{(i+1)} : 1 \leq i \leq n-1\}\). Let \(V(S(K_{1,n})) = \{u, v_i : 1 \leq i \leq n\}\) and \(E(S(K_{1,n})) = \{uu_i, u_i v_i : 1 \leq i \leq n\}\). Clearly the graph \(P_n+K_1\) has \(n+1\) vertices and \(2n-1\) edges.

Fix the label 2 to the central vertex \(u\) of \(K_1\) in the following three cases.

Case(i): \(n \equiv 0 \pmod{3}\)

Assign the label 1 to the vertices \(u_1, u_2, u_3, \ldots, u_{n/3}\) and assign the label 3 to the vertices \(u_{(n/3)+1}, u_{(n/3)+2}, \ldots, u_n\). Next then assign the label 2 to the vertices \(u_{(n/3)+2}, u_{(n/3)+4}, \ldots, u_{n-1}\).

Case(ii): \(n \equiv 1 \pmod{3}\)

Assign the label 1 to the vertices \(u_1, u_2, u_3, \ldots, u_{(n-1)/3}\) and 3 to the vertices \(u_{((n-1)/3)+1}, u_{((n-1)/3)+2}, \ldots, u_n\) and then assign the label 2 to the vertices \(u_{((n-1)/3)+2}, u_{((n-1)/3)+4}, \ldots, u_{n-1}\).

Case(iii): \(n \equiv 2 \pmod{3}\)

Assign the label 1 to the vertices \(u_1, u_2, u_3, \ldots, u_{(n+1)/3}\) and assign the label 3 to the vertices \(u_{((n+1)/3)+1}, u_{((n+1)/3)+2}, \ldots, u_n\). Then assign the label 2 to the vertices \(u_{((n+1)/3)+2}, u_{((n+1)/3)+4}, \ldots, u_{n-1}\). The table-4 establish that this vertex function \(f\) is 3- remainder cordial labeling of the fan for all \(n\).

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(v_1(1))</th>
<th>(v_1(2))</th>
<th>(v_1(3))</th>
<th>(\eta_c(0))</th>
<th>(\eta_o(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2n+1 \equiv 0 \pmod{3})</td>
<td>(\frac{n}{3})</td>
<td>(\frac{n+1}{3})</td>
<td>(\frac{n+2}{3})</td>
<td>(n)</td>
<td>(n-1)</td>
</tr>
<tr>
<td>(2n+1 \equiv 1 \pmod{3})</td>
<td>(\frac{n-1}{3})</td>
<td>(\frac{n+2}{3})</td>
<td>(\frac{n+3}{3})</td>
<td>(n-1)</td>
<td>(n)</td>
</tr>
<tr>
<td>(2n+1 \equiv 2 \pmod{3})</td>
<td>(\frac{n+1}{3})</td>
<td>(\frac{n+1}{3})</td>
<td>(\frac{n+2}{3})</td>
<td>(n)</td>
<td>(n-1)</td>
</tr>
</tbody>
</table>
Next we investigate the square of the path P_n^2.

Theorem 2.6: The square of the path P_n^2 is 3- remainder cordial for all values n.

Proof. Let P_n be a path u_1, u_2, \ldots, u_n of length n. Let $V(P_n^2) = \{u_i : 1 \leq i \leq n\}$ and $E(P_n^2) = \{u_iu_{i+2} : 1 \leq i \leq n-2\}$. Note that the square of the path has n vertices and $2n-3$ edges.

Case(i): $n \equiv 0 \pmod{3}$

Assign the label 1 to the first two vertices u_1 and u_2, respectively to the last two vertices u_{n-2} and u_n of length n. Next assign the labels 2 and 3 to the first two vertices $u_{(n/3)+1}$ and $u_{(n/3)+2}$ respectively. Next assign the labels 3 and 2 respectively to the next two vertices $u_{(n/3)+3}$ and $u_{(n/3)+4}$. Then assign the labels 2 and 3 to the vertices $u_{(n/3)+5}$ and $u_{(n/3)+6}$ and so on. When n is even, assign the labels 3 and 2 respectively to the last two vertices u_{n-1} and u_n respectively. When n is odd, assign the labels 2 and 3 respectively to the last two vertices u_{n-1} and u_n of the square of the path respectively.

Case(ii): $n \equiv 1 \pmod{3}$

Assign the label 1 to the consecutive vertices $u_1, u_2, u_3, \ldots, u_{(n-1)/3}$. Next assign the labels 2 and 3 to the first two vertices $u_{(n-1)/3+1}$ and $u_{(n-1)/3+2}$ respectively. Then assign the labels 3 and 2 respectively to the next two vertices $u_{(n-1)/3+3}$ and $u_{(n-1)/3+4}$. Then next assign the labels 2 and 3 to the vertices $u_{(n-1)/3+5}$ and $u_{(n-1)/3+6}$ and so on. Proceeding like this until we reach the vertex u_{n-1}. Clearly the vertex u_{n-1} is received the label 3. Finally assign the label 3 to the last vertex u_n when n is even. Otherwise assign the label 2 to the last vertex u_n of the path.

Case(iii): $n \equiv 2 \pmod{3}$

Assign the label 1 to the first $(\frac{n-2}{3})$ vertices $u_1, u_2, u_3, \ldots, u_{(n-2)/3}$. Next assign the labels 2 and 3 to the first two vertices $u_{(n-2)/3+1}$ and $u_{(n-2)/3+2}$ respectively. Then assign the labels 3 and 2 respectively to the next two vertices $u_{(n-2)/3+3}$ and $u_{(n-2)/3+4}$. Then next assign the labels 2 and 3 to the next two vertices $u_{(n-2)/3+5}$ and $u_{(n-2)/3+6}$ and so on. Finally assign the labels 2 and 3 to the last two vertices u_{n-1} and u_n when n is even. Otherwise assign the labels 3 and 2 to the last two vertices u_{n-1} and u_n of the path. The table-5 given below that this vertex function f is 3- remainder cordial labeling of P_n^2 for all n.

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$v_f(1)$</th>
<th>$v_f(2)$</th>
<th>$v_f(3)$</th>
<th>$\eta_e(0)$</th>
<th>$\eta_o(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 0 \pmod{3}$</td>
<td>$n/3$</td>
<td>$n/3$</td>
<td>$n/3$</td>
<td>$n-1$</td>
<td>$n-2$</td>
</tr>
<tr>
<td>$n \equiv 1 \pmod{3}$ (i). n is even</td>
<td>$n-1/3$</td>
<td>$n-1/3$</td>
<td>$n+2/3$</td>
<td>$n-1$</td>
<td>$n-2$</td>
</tr>
<tr>
<td>$n \equiv 1 \pmod{3}$ (ii). n is odd</td>
<td>$n-1/3$</td>
<td>$n+1/3$</td>
<td>$n+1/3$</td>
<td>$n-2$</td>
<td>$n-1$</td>
</tr>
</tbody>
</table>

Table –5

Here we investigate the armed crown AC_n.
Theorem 2.7: The graph AC_n is 3-remainder cordial for all values of n.

Proof. Let C_n be a cycle $u_1u_2, \ldots, u_n u_1$ of length n. Let $V(AC_n) = V(C_n) \cup \{v_i, w_i : 1 \leq i \leq n\}$ and $E(AC_n) = \{u_iv_i, v_iw_i : 1 \leq i \leq n\}$. It is easy to verify that the armed crown has $3n$ vertices and $3n$ edges.

Case(i): $n \equiv 0 \pmod{3}$
First assign the labels to the vertices u_i, v_i for all $i=1$ to n as follows.

$$f(u_i) = \begin{cases} 1, & \text{for } i = 1, 4, \ldots, i + 3, \ldots, n - 2. \\ 2, & \text{for } i = 2, 5, \ldots, i + 3, \ldots, n - 1. \\ 3, & \text{for } i = 3, 6, \ldots, i + 3, \ldots, n. \end{cases}$$

and $f(v_i) = \begin{cases} 1, & \text{for } i = 1, 4, \ldots, i + 3, \ldots, n - 2. \\ 2, & \text{for } i = 2, 5, \ldots, i + 3, \ldots, n - 1. \\ 3, & \text{for } i = 3, 6, \ldots, i + 3, \ldots, n. \end{cases}$

Next we consider the vertices w_i, $1 \leq i \leq n$ as follows.

Subcase(i): n is odd
Assign the labels 1, 2, and 3 to the vertices w_1, w_2, and w_3 respectively. Next assign the labels 2, 1 and 3 respectively to the vertices w_4, w_5 and w_6. Then assign the labels 1, 2, and 3 to the vertices w_7, w_8 and w_9 respectively. Then next assign the labels 2, 1 and 3 respectively to the vertices w_{10}, w_{11} and w_{12}. Continuing like this until we reach the vertices w_{n-2}, w_{n-1} and w_n. Clearly in this process the vertices w_{n-2}, w_{n-1} and w_n are received the labels 1, 2 and 3 respectively.

Subcase(ii): n is even.
As in subcase(i) assign the labels to the vertices w_i, $(1 \leq i \leq n-3)$. Finally assign the labels 2, 1 and 3 respectively to the vertices w_{n-2}, w_{n-1} and w_n.

Case(ii): $n \equiv 1 \pmod{3}$
Assign the labels to the vertices u_i and v_i, $(1 \leq i \leq n-1)$ as in case(i). Next assign the labels 2 and 1 to the vertices u_6 and v_n respectively. Next assign the labels 1, 2, and 3 to the vertices w_1, w_2, and w_3 respectively. Then assign the labels 1, 2 and 3 respectively to the vertices w_4, w_5 and w_6 and so on. Proceeding like this until we reach the vertex w_{n-1}. Note that in this process the vertices w_{n-3}, w_{n-2} and w_{n-1} are received the labels 1, 2 and 3 respectively. Finally assign the label 3 to the vertex w_n of the armed crown AC_n.

Case(iii): $n \equiv 2 \pmod{3}$
Assign the labels to the vertices u_i and v_i, $(1 \leq i \leq n-2)$ as in case(i). Next assign the labels 2,1 and 3,1 to the vertices u_{n-1}, u_n and v_{n-1}, v_n respectively. Now we consider the vertices w_i, $(1 \leq i \leq n)$. Assign the labels 2, 1 and 3 to the vertices w_1, w_2, and w_3 respectively. Then assign the labels 1, 2 and 3 respectively to the vertices w_4, w_5 and w_6. Next assign the labels 2, 1 and 3 to the vertices w_7, w_8, and w_9 respectively and 1, 2 and 3 respectively to the vertices w_{10}, w_{11} and w_{12}. In this way we reach the vertex w_{n-5}. Note that in this process the vertices w_{n-7}, w_{n-6} and w_{n-5} are received the labels 2, 1 and 3 respectively if n is even. Otherwise the vertices w_{n-7}, w_{n-6} and w_{n-5} are received the labels 2, 1 and 3 respectively. Finally assign the labels 1, 2, 3, 2 and 3 to
the vertices w_{n-4}, w_{n-3}, w_{n-2}, w_{n-1} and w_n of the armed crown AC_n. Thus the table 6, given below establish that this vertex labeling f is 3- remainder cordial labeling of the armed crown AC_n for all n.

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$v_f(1)$</th>
<th>$v_f(2)$</th>
<th>$v_f(3)$</th>
<th>$\eta_e(0)$</th>
<th>$\eta_o(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 0,1,2 \pmod{3}$ (i). n is odd</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>$3n - 1$</td>
<td>$3n + 1$</td>
</tr>
<tr>
<td>$n \equiv 0,1,2 \pmod{3}$ (i). n is even</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>$3n/2$</td>
<td>$3n/2$</td>
</tr>
</tbody>
</table>

Table – 6

Finally we investigate the 3- remainder cordial labeling behavior of $K_{1,n} \circ K_2$.

Theorem 2.8: The graph $K_{1,n} \circ K_2$ is 3- remainder cordial for all n.

Proof. Let $V(K_{1,n} \circ K_2) = \{x, y, u, v, w_i : 1 \leq i \leq n\}$ and $E(K_{1,n} \circ K_2) = \{xy, xu, yu, uu_i, u_iv_i, u_iw_i, v_iw_i : 1 \leq i \leq n\}$. Then the graph $K_{1,n} \circ K_2$ has $4n-1$ vertices and $4n-2$ edges.

Fix the labels 3,2 and 3 to the vertices u, x and y respectively and 2 to the vertices u_1, u_2, u_3, …, u_n into the following two cases.

Case(i): n is odd.

Now assign the labels to the vertices v_i, w_i for $(1 \leq i \leq n)$ as follows.

$$f(v_i) = \begin{cases} 1, & \text{if } i = 1 \text{ to } (n+1)/2 \\ 3, & \text{if } i = ((n+1)/2) + 1 \text{ to } n \end{cases}$$

and $f(w_i) = \begin{cases} 1, & \text{if } i = 1 \text{ to } (n+1)/2 \\ 3, & \text{if } i = ((n+1)/2) + 1 \text{ to } n \end{cases}$

Case(ii): n is even.

Assign the labels to the vertices v_i, w_i ; $(1 \leq i \leq n)$ as follows.

$$f(v_i) = \begin{cases} 1, & \text{if } i = 1 \text{ to } (n+2)/2 \\ 3, & \text{if } i = ((n+2)/2) + 1 \text{ to } n \end{cases}$$

and $f(w_i) = \begin{cases} 1, & \text{if } i = 1 \text{ to } n/2 \\ 3, & \text{if } i = (n/2) + 1 \text{ to } n \end{cases}$

Note that the vertex condition and edge condition are $v_f(1)$= $v_f(2)$=$v_f(3)$=$n+1$ and $\eta_e(0)$=$2n+2$, $\eta_o(1)$=$2n+1$ respectively in the both cases of n. Hence the function f is 3- remainder cordial labeling behavior of the graph $K_{1,n} \circ K_2$ for all n.

For illustration, a 3- remainder cordial labeling of $K_{1,5} \circ K_2$ is shown in Figure 2.1.
REFERENCES

